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ABSTRACT: Tin-based perovskites are emerging as less-toxic alternatives to their lead-
based counterparts for optoelectronic devices, such as solar cells and light-emitting
diodes (LEDs). However, despite their great potential, the efficiency of pure red tin-
based perovskite LEDs (Sn-LEDs) still lags behind that of lead-based perovskite LEDs
(Pb-LEDs), partly due to the poor electron blocking at the PEDOT:PSS/perovskite

%

interface. This leads to detrimental nonradiative recombination pathways that limit the " veooress EADRO3

performance of the LEDs. In this study, we replaced the conventional PEDOT:PSS layer
with the self-assembled monolayer (SAM) EADRO3, presenting, to the best of our
knowledge, the first report of a SAM employed as a hole-selective layer in Sn-LEDs.
EADRO3 simultaneously acted as an efficient electron-blocking and hole-injecting layer,
thereby reducing interfacial recombination losses and enhancing the LEDs’ performance.
As a result, we achieved a 3-fold enhancement in external quantum efficiency, propelling

the advancement of more efficient tin-based perovskite LEDs.
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B INTRODUCTION

Metal halide perovskites have emerged as promising semi-
conductor materials due to their remarkable potential in
different optoelectronic applications, including solar cells
(SCs) and light-emitting diodes (LEDs)."” Among them,
tin-based halide perovskites (Sn-HPs) have attracted growing
interest as a less toxic alternative to their lead-based
counterparts while still offering excellent optoelectronic
properties.”* Although Sn-based solar cells have shown
significant progress during the last years, the potential of Sn-
based perovskite LEDs (Sn-LEDs) still remains largely
unexplored.” Their development is mainly hindered by the
typical challenges presented by Sn-HPs, such as the easy
oxidation of Sn** to Sn**, and their fast crystallization rate that
leads to defect-rich structures.”” Accordingly, most reports
have been focusing on finding suitable additives and reducing
agents that can regulate the crystallization rate and inhibit the
oxidation process, respectively.” "' However, a less-mentioned
issue related to Sn-LEDs concerns the hole-selective layer
(HSL). So far, poly(3,4-ethylenedioxythiophene) polystyrene-
sulfonate (PEDOT:PSS) has been the only HSL reported in
Sn-LEDs, mainly due to its high conductivity and good
wettability, among other advantages. Nevertheless, it presents a
series of limitations, such as high parasitic absorption,12
hygroscopic behavior, and strong acidity that can damage ITO
electrodes and compromise the long-term stability of the
devices.">'* Furthermore, PEDOT:PSS is a strongly p-doped
polymer with high conductivity and semimetallic behavior."
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Consequently, its interface with perovskite typically induces
nonradiative exciton quenching via energy transfer and/or
trap-assisted charge recombination, thus reducing the perform-
ance of the devices.'*™"*

Despite these issues, only a few reports have addressed this
problematic interface in Sn-LEDs so far.'””*° A common
approach widely explored in Pb-based perovskite LEDs (Pb-
LEDs) relies on the incorporation of electron-blocking
interlayers that prevent the direct contact between PE-
DOT:PSS and perovskite, effectively reducing the electron
leakage.'”*'~** However, such interlayers rarely overcome the
other intrinsic limitations of the PEDOT:PSS. A more
promising strategy involves the full replacement of PE-
DOT:PSS with alternative HSLs. In this context, self-
assembled monolayers (SAMs) have shown improved
optoelectronic properties in Pb-LEDs,”*”*” but they have not
yet been reported in Sn-LEDs, likely due to the wettability
challenges associated with SAMs and to the shallow valence
band maximum (VBM) of Sn-HPs.”® In any case, suppressing
interfacial recombination while ensuring high-quality perov-
skite films is essential to achieving significant improvements in
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Figure 1. (a) Chemical structures of PEDOT:PSS and EADRO3. (b) Energy band diagram for ITO, PEDOT:PSS, EADRO3, and TEA,Snl,, values
extracted from refs. ” %%, and 30. Top-view SEM images of TEA,Snl, on top of (c) PEDOT:PSS and (d) EADRO3.

the performance of Sn-LEDs. Taking this into account, we
were then motivated to find an HSL that can effectively
address both challenges.

In this work, we replaced PEDOT:PSS with SAM 4-(3,6-
bis(2,4-dimethoxyphenyl)-9H-carbazol-9-yl)benzoic acid
(EADRO3), using it as the sole HSL in Sn-LEDs. The good
wettability of EADRO3 enables the formation of smooth Sn-
HP films, while its proper energy alignment -effectively
suppresses electron transfer at the interface, thereby reducing
nonradiative recombination. As a result, a 3-fold enhancement
in the maximum external quantum efficiency (EQE) of the
devices, ranging from 1% to 3.5%, was obtained. This is, to the
best of our knowledge, the first report of SAM-based Sn-LEDs,
paving the way for a future search for novel interfacial layers or
alternative HSL materials that can boost the efficiency and
scalability of Sn-LEDs.

B EXPERIMENTAL SECTION

Materials. All of the reagents used in the photovoltaic
study were obtained from commercial suppliers in high purity
and employed without further purification: 2-Thiopheneethy-
lammonium iodide (TEAI, 99.99%) was purchased from
Greatcell Solar Materials. Tin(II) iodide (SnI,, 99.99%), N,N-
dimethylformamide (DMF, 99.8%), and dimethyl sulfoxide
(DMSO, 99.8%) were purchased from Sigma-Aldrich.
PEDOT:PSS Al 4083 aqueous solution was purchased from
Heraeus. 4-(3,6-Bis(2,4-dimethoxyphenyl)-9H-carbazol-9-yl)-
benzoic acid (EADRO03, 99%) and 2,4,6-Tris[3-
(diphenylphosphinyl)phenyl]- 1,3,5-triazine (PO-T2T, 99%)
were purchased from Lumtec. Aluminum pellets (Al, 99.99%)
were purchased from Lesker. Prepatterned ITO glass
substrates (20 X 20 X 1 mm, 20 Ohm-sq™") were purchased
from Visiontek.

Device Fabrication. 2.0 X 2.0 cm prepatterned ITO
substrates were cleaned in subsequent ultrasonic baths, 15 min
each. First, the substrates were washed with water and soap
and then rinsed with milli-Q water. Afterward, they were
cleaned with acetone and isopropanol, and finally dried with
N, flow. A 25-min UV-Ozone treatment was performed strictly
before the hole selective layer (HSL) deposition. For HSL
deposition, a PEDOT:PSS solution was filtered with a 0.45 ym
PVDF filter and spin-coated on top of the ITO substrates at
3500 rpm-s~* for 40 s, followed by annealing at 125 °C for 30
min. The SAM layer was formed by statically spin-coating 100
uL of 4-(3,6-bis(2,4-dimethoxyphenyl)-9H-carbazol-9-yl)-
benzoic acid (EADRO3) dissolved in DMF at a concentration
of 1 mM (with a 5-s waiting time, 4000 rpm for 30 s). This was
followed by annealing at 150 °C for 15 min. The substrates
were then immediately introduced into a N,-filled glovebox for
the perovskite layer deposition. TEA,Snl, perovskite precursor
solution was prepared at 0.16 M using stoichiometric amounts
of TEAI and Snl, dissolved in a DMSO:DMF (1:9 V/V)
mixed solvent and stirred overnight. Sn powder was added to
the solution at a concentration of 5 mg/mL. The perovskite
solution was filtered and spin-coated on top of PEDOT:PSS at
4000 rpm for 60 s. No antisolvent was used, and the film was
prepared by a two-step annealing at 60 °C for 1 min and 90 °C
for 12 min. Finally, 40 nm of PO-T2T and 110 nm of Al were
deposited by thermal evaporation.

B RESULTS AND DISCUSSION

The chemical structures of PEDOT:PSS and EADRO3 are
presented in Figure la. Figure 1b represents the energy levels
of PEDOT:PSS, EADRO3, and the 2D perovskite used in this
work, 2-thiophenethylammonium tin-iodide (TEA,Snl,). All
of the values are summarized in Table S1. Compared to other
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Figure 2. Optical properties of TEA,Snl, films deposited on PEDOT:PSS or EADRO3. (a) PLQY spectra and (b) TRPL spectra.

SAMs, EADRO3 presents favorable energy levels to facilitate
efficient hole injection into the Sn-based perovskite layer while
simultaneously preventing the electron leakage from the
perovskite conduction band minimum (CBM), thus promoting
favorable radiative recombination.”®

Due to its chemical structure, EADRO3 can be chemically
attached to the ITO substrate through an ester-type covalent
bonding between its carboxylic acid moiety and the hydroxyl
groups present on the ITO surface.””" This chemical
attachment ensures a stable interface, modifying the surface
properties for a proper perovskite deposition without
compromising the charge transfer at the interface.”> X-ray
photoelectron spectroscopy (XPS) measurements were
performed to verify the surface chemical composition. Figure
S1 shows the high-resolution (HR) spectrum of C 1s for the
ITO/EADRO3 surface. The C 1s HR spectrum was curve-fitted
into five components corresponding to C—(C,H) at 284.80 eV,
C—N-C at 286.10 eV, C—O—C at 286.80 eV, HO—C=O0 at
288.38 eV, and O=C—O0 at 289.95 eV. The peaks attributed
to C—-N—C and HO—C=0 confirm the formation of the
EADRO3 film, and the presence of the O=C—O peak verifies
the formation of a covalent ester bond between the carboxylic
group of EADRO3 and the hydroxyl groups present on the ITO
surface. Additionally, the higher In*/In—OH ratio in the
ITO/EADRO3 film (2.6%) compared to the bare ITO film
(2.0%) indicates fewer free hydroxyl groups on the ITO
surface, further confirming the formation of the chemical bond
(see Figure S2). Note that although the chemical bonding of
EADRO3 to the ITO hydroxyl groups is demonstrated, the
resulting layer should not be strictly referred to as a monolayer,
as it is deposited by spin coating. Figure S3 shows the contact
angles of water droplets on the ITO (88.2°) and ITO/
EADRO3 (54.6°) surfaces. The increased hydrophilicity upon
the surface modification by EADRO3 can improve perovskite’s
wettability, addressing one of the main challenges associated
with SAM-type molecules in Sn-based systems, where poor
wettability typically results in poor film coverage and the
formation of low-quality perovskite films.>* From hereafter,
and to avoid confusion, TEA,Snl, films deposited on
PEDOT:PSS and EADRO3 will be referred to as Sn-
PEDOT:PSS and Sn-EADRO3, respectively. Note that all
films were deposited without using an antisolvent step, making
the procedure more compatible with future upscaling
approaches, as previously described by our group.'’

To evaluate the perovskite morphologies on the different
layers, we performed scanning electron microscopy (SEM)
measurements. Figure 1c,d shows the top-view SEM images of
Sn-PEDOT:PSS and Sn-EADRO3 films, and lower magnifica-
tion images with grain size histograms are also provided in
Figure S4. The Sn-PEDOT:PSS film presented a poor and
nonhomogeneous morphology, with incomplete film coverage.
In contrast, Sn-EADRO3 displayed a better film quality, with
fewer pinholes and a more compact and uniform grain
arrangement. This improved morphology can be attributed to
effective interactions between the perovskite precursors and
the EADRO3 layer during the film formation, leading to a
better crystallization process.

In order to confirm the crystallinity of the perovskite, X-ray
diffraction (XRD) analysis was performed and is presented in
Figure SS. Both Sn-PEDOT:PSS and Sn-EADRO3 films
exhibited the same 00! (I = 2, 4, 6, 8, 10, and 12) diffraction
peaks, confirming the formation of the 2D crystal structure,”*
and no significant change in the preferential crystalline
orientation is observed.

To further assess the chemical quality of the films, we
performed XPS measurements on both the Sn-PEDOT:PSS
and Sn-EADRO3 films. As shown in Figure S6 and Tables S2
and S3, perovskite films deposited on EADRO3 exhibited a
slightly lower amount of Sn*" compared to those grown on
PEDOT:PSS (31.5% vs 34%, respectively).”® This difference
may suggest that EADRO3 contributes to the formation of a
less defective film, as the presence of Sn*' is typically
associated with the oxidation of Sn’* and the formation of
intrinsic defects in Sn-HPs. Additionally, the I7/1, ratio was
evaluated, and it was found to be higher for Sn-EADRO3 films
(26.8) compared to Sn-PEDOT:PSS films (10.5), pointing to a
better chemical stability of the former. A lower I"/I, ratio
reflects a higher presence of molecular I,, which is a well-
known byproduct resultant from the Sn-HPs degradation
process,” suggesting also a premature degradation. We also
calculated the overall I:Sn atomic ratio, which, according to the
TEA,Snl, stoichiometry, should be 4:1. However, it was found
to be 3.02 for Sn-PEDOT:PSS and 3.33 for Sn-EADRO3.
These discrepancies may result from iodide losses during film
formation or from partial degradation during sample shipment
for characterization. In any case, the XPS analysis suggests that
replacing PEDOT:PSS with EADRO3 improves the chemical
quality of the final perovskite layer, as reflected by the higher
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Figure 3. (a) Sn-LED device architecture. (b) CIE 1931 color chromaticity diagram of the Sn-LEDs. (c—f) Properties of the Sn-LEDs using
PEDOT:PSS or EADRO3 as HSL, namely (c) electroluminescence spectra, (d) current density—voltage-luminance curves, (e) EQE vs current
density, and (f) normalized EQE-operational time at continuous working conditions, keeping constant the injected current that provides an initial

luminance of 10 cd'm™>.

I"/1, ratio and the I:Sn stoichiometry closer to the theoretical
value.

To understand the effect of the different HSLs on the optical
properties and carrier dynamics of the perovskite films, we
conducted ultraviolet—visible absorption (UV—vis), steady-
state photoluminescence quantum yield (PLQY), and time-
resolved PL spectroscopy (TRPL) measurements. Both Sn-
PEDOT:PSS and Sn-EADRO3 films showed similar narrow
excitonic absorption peaks located at 618 nm (see Figure S7)
and similar normalized PL spectra (see Figure S8), with
photoluminescence emission peaks centered at 630 nm, but
Sn-EADRO3 presents higher steady-state PL intensity (Figure
2a). The PLQY of Sn-EADRO3 (3.4%) was significantly higher
compared to Sn-PEDOT:PSS (1.5%) (see Figure 2a). This
discrepancy can be partly attributed to the highly p-doped
nature of PEDOT:PSS. Du et al.'® showed that hole
accumulation at the PEDOT:PSS/perovskite interface facili-
tates electron transfer from the perovskite’s CBM to the
PEDOT:PSS layer, inducing nonradiative exciton quenching.
In contrast, EADRO3 can suppress this quenching pathway
while simultaneously improving the perovskite film morphol-
ogy, as shown in Figure Ic,d. Furthermore, Aranda et al
recently reported that the chemical interaction between the
OH-— groups present at the ITO substrate and the carboxylic
groups of EADRO3 prevents the accumulation of positively
charged ions/vacancies at the interface, reducing the interfacial
recombination.’® Therefore, we attribute the enhanced PLQY
to a more favorable interface with suppressed ionic
accumulation and fewer nonradiative recombination chan-
nels.”’~** Moreover, the TRPL spectra shown in Figure 2b
support this. The shorter PL decay observed for Sn-
PEDOT:PSS suggests undesirable electron transfer processes
from perovskite’s CBM to PEDOT:PSS. In contrast, EADRO3

suppresses this nonradiative recombination channel, leading to
longer carrier lifetimes and favoring radiative recombination
within the perovskite layer."”*' The longer PL decay of Sn-
EADRO3 can also be associated with a lower density of
structural defects, which act as nonradiative recombination
centers,"” consistent with the improved perovskite morphology
and inferring enhanced optoelectronic properties for Sn-
EADRO3.

Furthermore, Sn-based LEDs were fabricated with a p-i-n
configuration: ITO/HSL/TEA,Snl,/PO-T2T/Al, as shown in
Figure 3a. Both control and EADRO3-based devices exhibited
electroluminescence (EL) peaks centered at 636 nm with LED
color coordinates of (0.710, 0.290), matching the pure red
vertex defined by the Commission Internationale de I'Eclairage
(CIE) REC. 2020 standards (see Figure 3b,c).

Moreover, although Sn-EADRO3 presents lower luminance
than Sn-PEDOT:PSS over a range of applied voltages, the
luminance is obtained with a significantly lower amount of
injected current, implying improved charge injection efficiency
(see Figure 3d). As a consequence, and as shown in Figure 3e,
Sn-PEDOT:PSS exhibited a maximum EQE of 1%, while Sn-
EADRO3 achieved a 3-fold enhancement in EQE, reaching up
to 3.5%. In addition, it is worth highlighting that at high
applied voltages, Sn-EADRO3 reached a higher maximum
luminance of 90 cd-m™?, compared to the 70 cd-m™2 obtained
by Sn-PEDOT:PSS (see Figure 3d).

Figure 3e presents the results for the champion devices, and
a statistical distribution of the maximum EQEs is also shown in
Figure S8. Notably, EADRO3-based devices retained EQE
values above 1% even at high current densities as high as 10
mA-cm~?, thereby decreasing the high EQE roll-off typically
observed in some of the state-of-the-art Sn-LEDs under high
current operation.”*’ Moreover, as has been noted, Sn-
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PEDOT:PSS exhibited higher average current densities at the
same applied voltages than Sn-EADRO3. This behavior can be
ascribed to the high conductivity of the PEDOT:PSS layer
combined with current leakages caused by ineffective electron
blocking at the PEDOT:PSS/TEA,Snl, interface. These
nonradiative leakage pathways not only limit the EQE but
also increase the current density required to achieve the
desired luminance, increasing thermal stress and potentially
compromising long-term device stability. To verify this
consideration, the operational stability of the encapsulated
devices in ambient air (25 °C and 60% RH) at a constant
injected current density that provides an initial brightness of 10
cd-m™* was studied (see Figure 3f). Control devices presented
a halflife stability (Ts,) of 28 min, whereas EADR03-based
devices demonstrated superior stability, with a Ty, of 47 min.
Here, Ty is defined as the time under continuous operation at
which the initial EQE drops to 50%. The reduced stability of
control devices may be attributed to both the high
hygroscopicity of PEDOT:PSS and its limited electron-
blocking ability, which enables nonradiative leakage pathways.
On the one hand, the high hygroscopicity can promote the
adsorption of water molecules and accelerate the degradation
processes of perovskite, and on the other hand, the increased
nonradiative recombination processes may intensify the
thermal stress of the devices and compromise their long-term
stability.

B CONCLUSIONS

In summary, we present the first report of Sn-LEDs using a
SAM (EADRO3) as HSL. The perovskite films deposited on
EADRO3 showed improved morphology compared to those
deposited on PEDOT:PSS, and, more importantly, the
unfavorable PEDOT:PSS/TEA,Snl, interface was resolved.
EADRO3 not only enables efficient hole injection but also
effectively suppresses electron leakage, thus promoting
radiative recombination and improving the device perform-
ance. This work demonstrates the potential of SAM as HSLs
for Sn-LEDs and represents a step toward more efficient and
stable Pb-free halide perovskite LED:s.
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